
Chapter 17
Design and Implementation of Blocking
Shared Memory for Satellite Navigation
Application Processing System

Weijie Sun, Enqiang Dong, Jidong Cao and Xiaoping Liu

Abstract Being the computing center of satellite navigation system, application
processing system is charged with lots of high-precision computing tasks including
orbit determining, time synchronizing, ionosphere model calculating, difference
and integrity parameters processing, and it has a large number of features, such as
mass and multi-sort data, heavy computing tasks, high precision of calculation, so
there are much rapid mass-data transmissions between different processes. As the
primary means of communication between processes, shared memory has the
characteristic of rapid mass-data transmission. Therefore there are lots of shared
memories to transfer data among different processes in application processing
system. This paper describes the realization principle of shared memory, focuses
on parsing the blocking shared memory design principle, achieves the blocking
shared memory template class based on the principle, and through the test verifies
the reliability of the template class.

Keywords Blocking shared memory � Satellite navigation � Application pro-
cessing system

17.1 Introduction

With the continuing development of the satellite navigation technology, the
satellite navigation system has been used in every aspect of our society. As the
data processing center of the satellite navigation system, the application processing
system undertakes the high-accuracy computation of the satellite orbit determin-
ing, time synchronizing, ionosphere model, difference and integrity parameters

W. Sun (&) � E. Dong � J. Cao � X. Liu
Beijing Satellite Navigation Center, Beijing, China
e-mail: sun_weijie@sina.com.cn

J. Sun et al. (eds.), China Satellite Navigation Conference (CSNC) 2013
Proceedings, Lecture Notes in Electrical Engineering 243,
DOI: 10.1007/978-3-642-37398-5_17, � Springer-Verlag Berlin Heidelberg 2013

177

processing and so on. Consequently, the application processing system has the
characteristics like the high-level receiving data, the multi-types data, high-
accuracy computation requirement and the heavy computation task. To ensure the
real-time ability, the parallel computation technology is used to realize the high-
speed processing of information by using multi- process and multi-thread tech-
nology. At the same time, the reliable communication between different processes
to is required.

The most common used communication methods between processes include
file, pipeline, message queue and shared memory, which theories are illustrated in
Fig. 17.1.

• File

The communication between two processes is realized by shared files saved in
the file system. Each process needs to traverse kernels like read, write, lseek
functions etc. The synchronization mechanism is needed to realize the read and
write protection between processes.

• Pipeline and message queue

The communication between two processes is realized by accessing shared
messages maintained by operating system. The accessing operation by each pro-
cess involves a system calling to kernels.

• Shared memory

The two different processes map their virtual addresses into the same shared
memory addresses, regarding as their own virtual memories to realize communi-
cation between processes. Once the address mapping is established, the kernel is
never needed on the data transfer between processes. The synchronization
mechanism is needed to ensure the safety between processes.

process process process process process process
Shared

Memory

Operating
System Kernel

Shared
Message

File System

File
Pipeline

Message Queue
Shared Memory

Fig. 17.1 Interprocess communication modes

178 W. Sun et al.

The shared memory is common used in the application processing system of the
satellite navigation because of the characteristic of rapid mass-data transmission.
The System V mechanism of shared memories is illustrated in the paper.

17.2 The implementation Principles of Shared Memory

The shared memory is the most fast intercross communication type [1]. The virtual
address of process can be mapped into any physical address. If the virtual addresses
of two processes are mapped into the same physical address, the communication
between processes can be realized by using their own virtual addresses [2]. As
explained above, the kernel is never involved in the data transfer process Fig. 17.2.

The shared data needed by different processes are saved into the shared memory
of IPC. The application process can get or establish a shared memory of IPC by
using system function shmget() with corresponding identifier returned. For every
established shared memory, a shmid_ds structure is maintained by kernel to
describe the shared memory. The shmid_ds structure of every shared memory is
saved into the shm_segs array. The access privilege, capability and physical
address of shared memory are described by the shmid_ds structure.

struct shmid_ds
{

struct ipc_perm shm_perm; /*IPC access permission*/
size_t shm_segsz; /* shared memory size*/
struct vas* shm_vas; /* virtual address entry list*/
pid_t shm_lpid; /* current process pid*/
pid_t shm_cpid; /*creating process pid*/
time_t shm_atime; /*last shmat() time*/
time_t shm_dtime; /*current shmdt() time*/
time_t shm_ctime; /*last shmctl() time*/
shmatt_t shm_nattch; /*Number of processes connection*/
unsigned long int shm_npages; /*number of shared memory pages*/
unsigned long int* shm_pages; /*shared memory pages list*/

…
 }

Every process which use shared memory map its virtual memory into shared
memory using system function shmat(). The mapping relation is described by the
newly established vm_area_struct. When the process visit the shared memory
at the first time, the system will distribute a physical page and establish the page
table (pointed by shm_ pages) and its entrance. This entrance is saved into the
vm_area_struct corresponding to the process. When the next process uses the
shared memory in the first time, the dealing function can be used directly to direct
into the pages of the physical memory. Consequently, the first visiting process
establishes the physical memory page and the succeeding processes can use the
physical memory pages directly.

17 Design and Implementation of Blocking Shared Memory 179

When the shared memory is not used by the process, the process call the
shmdt() function to cancel the mapping of the shared memory. The corresponding
vm_area_struct will be deleted from the shmid_ds structure. After the last process
released its virtual address space, the system release the distributed physical page
and delete the shmid_ds structure.

The shmctl() function realize the control operation of the shared memory.

17.3 Design and Implementation of Blocking
Shared Memory

17.3.1 Design Principle

The two model of the shared memory can be summarized by analyzing the using
method of share memory in the application processing system of the satellite
navigation. One model is that one process writes and several processes read. For
example, the pre-processed data received by the data receiving process is need to
send to several calculation process, such as the satellite orbit determining, time
synchronizing, ionosphere model etc. The second is that one process writes and
only one process reads, such as the data receiving process only send its data to the
pre-processing process.

At the same time, the synchronization mechanism is needed to ensure the
communication safety between processes otherwise the condition that several
processes read or write the shared memory simultaneously can be generated. The
following errors may be generated [3]: the saved data in disorders, the taken data
incomplete and the read process executes before the end of the write process.
Consequently, the synchronization mechanism between different processes is
needed to ensure the read or write safety of shared memory. In the paper, the value
of signal is used as the synchronization mechanism between different processes.

shm_segs array

shmid_ds

shm_vas

shm _pages

vm_area_struct1 vm_area_struct2 vm_area_structN

Process1 Process 2 ProcessN

create create create

ipage

shared memory

ipage ipage

address
mapping

address
mapping

address
mapping

Fig. 17.2 Schematic diagram of shared memory

180 W. Sun et al.

The blocking shared memory is designed in the application processing system
of the satellite navigation based on the general principle. The one to many or one
to one communication type can be set flexibly by the configuration file. The design
structure of the blocking shared memory is illustrated in Fig. 17.3. The shared
memory includes three parts: the area of the shared memory, the data notice
semaphore of the shared memory and the area of the signal control.

The shared memory includes the location of writing, the record of the location
of the read process and the data protection area. The location of the data writing
m_ pWritePos is used to indicate the index of the written data in the data protection
area. As the processing times are different among different applications, the
un-synchronization of reading is generated. The indicator of the location of the
reading processes is used to show the particular location of several reading pro-
cesses. The data protection area is used to save the written data in the shared
memory. The written process writes the data into the record item one by one.
When the last item is written, the first item is written again for the next circulation.
As a result, the whole data protection area is used as a circulation queue.

In the process of using the shared memory, if the shared memory is established
firstly, the data written location is directed into the first data item and the read
locations are set to zero. If the shared memory exists already, the pointer of the
shared memory, m_ pShmAddr, is got by using the function shmat(). Then the
particular data written location and the information of the reading process can be
got through the m_ pShmAddr pointer.

The semaphore of every read process is set by the semaphore of the shared
memory. Every semaphore includes the indication of the signal lamp szPath and
the pointer pSem. When the data is written into the shared memory, the data notice
signal of the shared memory is used to inform every reading process that the
written process is over. The function acquire() is used to block and wait the
coming of the data until the function release() inform the write can be done.

Writting data
position

Reading data posititon
of process 1

corrPos
4byet

startPos
4byte

Position recorders of writting data process
reader_count

m_pWriterPos

Reading data posititon
of process N

Data-Item Data-Item

Data storage block
(m_nItemcount+1 data-item)

m_pShmAddr m_pReaderPosList m_pItem

Data Format of Shared Memory

Semaphore of reading
data process 1

Semaphore of reading
data process N

m_pReaderSempArry *pSempszPath

Notifing semaphore of shared memory
reader_count

Shared memory counter
m_pCounter

Shared memory mutex
m_pMutex

signal control area

Fig. 17.3 Design diagram of shared memory

17 Design and Implementation of Blocking Shared Memory 181

To avoid the read/write conflicts of the shared memory, the read/write operation
synchronization is realized by the signal control area. The signal control area
includes the mutex and the counter of the shared memory. The mutex m_ pMutex is
mainly used to realize the data read and write synchronization. The shared memory
can be accessed only when the visiting control of m_ pMutex is got. The counter
m_ pCounter of shared memory is a group of semaphore. For every process which
uses the shared memory, the counter is added one using m_ pCounter-[op(1, 0,
SEM_UNDO) to record the number of the processes that use the shared memory
(the record SEM_UNDO is set and the counter is subbed one when the process quit).
When other processed quit and only the current process use the shared memory, the
current process call the system function shmdt() to delete the shared memory.

17.3.2 Design Implementation

Using C++ language, this paper implements a template class blockSHM of
blocking shared memory based on ACE middleware (Table 17.1).

template\typename TYPE[class blockSHM

There, TYPE is the abstract data structure of shared memory data item.
The main parameters and functions of blockSHM class as follow:

typedef struct READER_POS

{

int startPos; /* last position of reading process getting the data*/

int currPos; /*current position of reading process getting the data*/

}READER_POS;

typedef struct READER_SEMP

{

char szPath[NAME_LENGTH]; /*semaphores flag*/

ACE_Process_Semaphore *pSemp; /* semaphore pointer*/

}

Table 17.1 Main parameters of the blockSHM shared memory template class

Parameter declaration Parameter description

char *m_ pShmAddr Starting address of shared memory
ACE_SV_Semaphore_Complex
*m_ pCounter

Counter pointer of shared memory

ACE_Shared_Memory_SV *m_ pShmObj Object pointer of shared memory
ACE_Process_Mutex *m_ pMutex; Mutex pointer of shared memory
int *m_ pWriterPos Writing data location, index of the data storage block
TYPE*m_ pItem Data item pointer
int m_nItemCount The number of storage data
READER_POS *m_ pReaderPosList Starting address of location array for reading

process
ACE_ Process_Semaphore

*m_ pReaderSemp
Starting address of semaphore array for reading

process

182 W. Sun et al.

blockSHM shared memory template class has four main functions:
init_writer () function is used to complete shared memory initialization by

writing process.

int init_writer(const char* name, const int count, const int reader_count, bool replace)

{

Judge the variables rationality;

Create shared memory counter(if created, open), counter is incremented by 1;

Create the shared memory mutex between processes;

Loop to create shared memory semaphores base on the number of reading processes;

create shared memory, if created, open and get the writing position in shared memory;

}

init_reader() function is used to complete shared memory initialization by
reading process.

int init_reader(const char* name, const int count, const int reader_count, const short reader_sn)

{

Judge the variables rationality;

Create shared memory counter (if created, open), counter is incremented by 1;

Create the shared memory mutex between processes;

Loop to create shared memory semaphores base on the number of reading processes;

Create shared memory, if created, open and get the reading position of the current process;

}

put() function is used to write data into shared memory. It will write a data-
item at every calling and send signals to notify all processes that are blocked and
waiting to read the shared memory.

get() function get only one data-item from shared memory at every calling

int put(const TYPE &Item)

{

Lock shared memory mutex;

Write data;

Loop to signal shared memory semaphores by calling release() function based on the number of

writing process;

Unlock shared memory mutex;

}

int get(TYPE &outItem)

{

Reading process call acquire() of shared memory semaphore to block and wait ultil the release

signal of writing process;

Lock shared memory mutex;

Read data;

Unlock shared memory mutex;

}

17 Design and Implementation of Blocking Shared Memory 183

17.4 Experiment and Result Analysis

With the blockSHM template class of shared memory, this article constructs
Server.cpp and Client.cpp program to test the transmission delay and functionality
of shared memory. The structure of test programs is shown in Fig. 17.4.

In the test, Server program put data-item into shared memory, Client program is
blocking and waiting to get data-item from shared memory when it receives the
signal of the shared memory semaphore. Each data packet contains the Server
program’s sending data time, after receiving the sending data packet, Client pro-
gram calls system function to get local time and obtain the shared memory data
transmission delay by calculating the difference value between local time and
sending time. Server program loop to send 3000 data packets and set 1K and 100K
data packets size respectively in the test.

The test work selects a HP rx4640 server, 4 9 1.6G CPU, 8G memory.

process configuration

Start

init_writer()

loop to
write data

put()

Stop

Looping

process configuration

Start

init_readr()

while

get()

Stop

Looping over

Writing data Reading data

ctrl+c
process quit

Server Client

usleep()

Fig. 17.4 Structure diagram of test programs

184 W. Sun et al.

17.4.1 Capability Analysis

1K data packet, shared memory transmission delay results are show in Fig. 17.5.
100K data packet, shared memory transmission delay results are shown in

Fig. 17.6.
Test results of shared memory data transmission delay are shown in Table 17.2.
From the results, 1k data packet transmission delay is consistent with 100k data

packet transmission delay, so shared memory transmission delay is not directly
related to the size of data packet size. Analysing the reason, shared memory
directly operate the memory and use memcpy() system function to copy block data
for putting or getting data, the size of the data is basically no effect on the
operation delay of memcpy() function, And thus the transmission delay is basically
the same.

There are more discrete points of large transmission delay in Figs. 17.5 and
17.6. Analysing the reason, there are other processes working in the server, the
processes will be phased share system resources to run, and the running of Server

Fig. 17.5 Shared memory transmission delay: 1K data packet

Table 17.2 Transmission
delay of shared memory

Data packet size Mean (ms) Variance (ms)

1K 0.145 0.382
100K 0.175 0.423

17 Design and Implementation of Blocking Shared Memory 185

and Client process need to compete for resources with other processes, therefore,
the reasons for more discrete points of large transmission delay can be attributed to
the waiting time of the Server process and Client process competing for resources.

17.4.2 Functionality Analysis

This paper first constructs shared memory test environment which is characterized
by Server process for writing data and multiple Client process for reading data that
are derived by Server.cpp and Client.cpp separately. Then, a data packet trans-
mission experiment using different transmission frequency and size for packet is
conducted to test the blockSHM obstructive shared memory. The test procedure
does not demonstrate abnormal phenomenon. Moreover, the phenomenons of
packet loss and data transfer that are delay too long are absence in blockSHM
obstructive shared memory. The experiment indicates that template class for
blockSHM shared memory shows promising robustness and stability.

Fig. 17.6 Shared memory transmission delay: 100K data packet

186 W. Sun et al.

17.5 Conclusion

This paper first discusses the basic principle of shared memory. Based on the
analysis of inter-process communication requirement of satellite navigation busi-
ness processing system, the paper focuses on principle of design and realization for
obstructive shared memory, then successfully constructed template class for
blocking shared memory. After that, an experimental analysis is conducted to test
shared memory. The experiment verifies the effectiveness and stability of template
class for the blocking shared memory, which provides basic platform components
for the development of the navigation system in the future.

References

1. Stevens WR (2003) UNIX network programming, interprocess communications (vol 2, 2nd
edn). Tsinghua University Press, Beijing, pp 261–262

2. Guo X, Gao S (2001) The analysis of unix system V IPC and share memory audit. Appl Res
Comput 18(4):39–40

3. Zhang H, Sun C, Li J (2004) Research and implementation of synchronized shared memory in
Linux. J HUNAN Indus Polytech 4(4):19–20

17 Design and Implementation of Blocking Shared Memory 187

	17 Design and Implementation of Blocking Shared Memory for Satellite Navigation Application Processing System
	Abstract
	17.1…Introduction
	17.2…The implementation Principles of Shared Memory
	17.3…Design and Implementation of Blocking Shared Memory
	17.3.1 Design Principle
	17.3.2 Design Implementation

	17.4…Experiment and Result Analysis
	17.4.1 Capability Analysis
	17.4.2 Functionality Analysis

	17.5…Conclusion
	References

